Electronic and vibrational contributions to first hyperpolarizability of donor-acceptor-substituted azobenzene.
نویسندگان
چکیده
In this study we report on the electronic and vibrational (hyper)polarizabilities of donor-acceptor-substituted azobenzene. It is observed that both electronic and vibrational contributions to the electric dipole first hyperpolarizability of investigated photoactive molecule substantially depend on the conformation. The contributions to the nuclear relaxation first hyperpolarizability are found to be quite important in the case of two considered isomers (cis and trans). Although the double-harmonic term is found to be the largest in terms of magnitude, it is shown that the total value of the nuclear relaxation contribution to vibrational first hyperpolarizability is a result of subtle interplay of higher-order contributions. As a part of the study, we also assess the performance of long-range-corrected density functional theory in determining vibrational contributions to electric dipole (hyper)polarizabilities. In most cases, the applied long-range-corrected exchange-correlation potentials amend the drawbacks of their conventional counterparts.
منابع مشابه
Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes
In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...
متن کاملQuantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes
In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...
متن کاملApplying Density Functional Theory to Study NLO Properties of Benzyne-Based Chromophores
Density Functional Theory (DFT) calculations were employed to investigate the structural characteristics, electronic properties, and nonlinear optical properties of Benzyne-Based Chromophores at B3LYP/6-31G(d,p) level. The effects on the hyperpolarizabilities of various donor and acceptor substituent (H, F, Cl, Br, Me, NH2, OH, NH3+, COOH, CHO, CN, NO,NO2 ) were studied. The results reveale...
متن کاملSubstituent Effects on the Structural and Nonlinear Optical Properties of 1-[4-({(E)-[4-(methylsulfanyl)phenyl]methylidene}amino)phenyl]ethanone and Some of its Substituted Derivatives- a Theoretical Method
This work investigates the structural and nonlinear optical properties of a D-A type 1-[4-({(E)-[4-(methylsulfanyl)phenyl]methylidene}amino)phenyl]ethanone, MMP in which charge transfer occurs from -SCH3 donor to -COCH3 acceptor group through methylidene backbone; and some of its modeled analogues using quantum chemical calculations with pure BLYP and hybrid B3LYP correlation with high basis se...
متن کاملAnalytic density functional theory calculations of pure vibrational hyperpolarizabilities: the first dipole hyperpolarizability of retinal and related molecules.
We present a general approach for the analytic calculation of pure vibrational contributions to the molecular (hyper)polarizabilities at the density functional level of theory. The analytic approach allows us to study large molecules, and we apply the new code to the study of the first dipole hyperpolarizabilities of retinal and related molecules. We investigate the importance of electron corre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 133 24 شماره
صفحات -
تاریخ انتشار 2010